

VARIATIONS IN NUTRIENT AND ANTINUTRIENT CONTENT OF SOME NIGERIAN BAMBARA GROUNDNUT ACCESSIONS

Okereke, Agbonma Chioma^a; Edugbo, Richmond Emuohwo^{b*}; Nwofia, Godson Emeka^c and Okocha, Peter Iwunor^c

^aNational Institute for Oil Palm Research (NIFOR), Benin City, Edo State Nigeria. ^bFederal University of Technology, Babura, Jigawa State, Nigeria. ^cMichael Okpara University of Agriculture, Umudike, Abia State, Nigeria.

*Corresponding Author: richmondedugbo@gmail.com

ABSTRACT

Proximate and nutrient analysis of edible plants plays a crucial role in assessing their nutritional significance. Biochemical analysis of the carbohydrate, fat, protein and mineral content reveals that Bambara groundnut produces an almost balanced diet. However, the nutritional attributes may vary among samples of different genotypes. This study evaluated the variations in the proximate, mineral and antinutrient characters of thirteen Bambara groundnut accessions planted across three locations. The results showed that the Bambara groundnut accessions varied significantly for all the proximate, mineral and antinutrient traits evaluated. These significant genotypic variations in nutrient attributes may be attributed to differences in the genetic architecture of the accessions and suggest the potential for improvement of any of these nutrient traits through breeding programmes. Location also played a critical role in influencing these nutritional traits, further impacted by genotype-environment interactions. PCA showed substantial contributions of nutrient traits to the total observed variation. This study highlights the influence of environmental factors, such as agroclimatic and soil conditions, on Bambara groundnut's nutritional quality. The study also showed evaluated accessions are rich in nutrients, underscoring their potential as valuable dietary components in sub-Saharan Africa, particularly Nigeria. These genotypes offer promising breeding material for improving the nutritional characteristics of Bambara groundnut.

Key words: Accessions, nutritional analysis, proximate composition, minerals, phytochemicals

Introduction

Bambara groundnut (Vigna subterranea L. Verdc) is a herbaceous annual plant characterized by creeping stems. It is an indigenous African legume that remains underutilized (Unigwe et al., 2016). The crop is especially valued for its high protein content and is primarily grown by small-scale farmers for subsistence purposes (Unigwe et al.. 2016). Most cultivated Bambara groundnut genotypes are landraces, which are derived directly from their wild relatives (Unigwe et al., 2016). These landraces have adapted to local environmental conditions and are favored by farmers for their yield stability across various environments (Massawe et al., 2005). As a result, they provide an essential source of genetic diversity that can be further exploited. Conducting proximate and nutrient analysis of edible plants is critical for understanding their nutritional value (Pandey et al., 2006). There is need for more research to focus on the nutritional and phytochemical properties of crops like Bambara groundnut, which are important but often neglected. Nutritionally, Bambara groundnut represents an affordable, protein-rich food source that could help improve food and nutrition security, particularly in rural households. Biochemical analysis of its carbohydrate, fat, protein, and mineral content reveals that it provides a diet. balanced However, nearly the nutritional and phytochemical properties may vary among different genotypes (Adeleke et al., 2018), possibly due to differences in genetic makeup and the influence of environmental factors such as agro-climatic conditions and crop management practices. Consequently, this study aims to investigate the variation in nutritional traits among different Bambara groundnut accessions across various locations.

Materials and methods Experimental site

Field experiments were carried out across 2017 and 2018 cropping seasons in three field locations. The locations were: (i) The substation of National Cereals Research Institute (NCRI) Amakamma, in humid Rainforest agro- ecological zone of South East Nigeria (lat.5[°] 28¹ N, Long.7[°] 29[°] E; The Research station of the Nigerian Institute For Oil Palm Research (NIFOR), Benin city, Edo State, Nigeria. The location lies in the rainforest agro-ecological zone of Nigeria with latitude 6^0 33¹N and longtitude 5^0 37¹ E and lies 156m above sea level. (iii) The third location is the substation of National Root Crops Research Institute (NRCRI). Igbariam: which falls in the derived savannah agroecological belt of Nigeria. It lies in Latitude $06^0 14^1$ N and longititude $06^0 45^1$ E.

Pre-planting soil analysis:

Pre-planting soil sample analysis was done to determine the physico-chemical properties of the planting sites. Soil samples from depth of 0-20 cm were randomly collected from different points of planting sites, using a soil extractor (augar) before field preparation. The collected sample were bulked and taken to soil science laboratory for analysis.

Planting materials:

Table I Bambara grou	able 1 Bambara groundnut accessions used in this study and their sources of conection					
S/No.	Accessions	State of origin				
A1	Kano	Kano state				
A2	Zuru11	Kebbi state				
A3	Ankpa	Kogi state				
A4	Jos11	Plateau state				
A5	Zuru1	Kebbi state				
A6	Nkanu	Enugu state				
A7	Jos111	Plateau state				
A8	Agwu	Enugu state				
A9	Jos1	Plateau state				
A10	Aniri	Enugu state				
A11	Ezeagu	Enugu state				
A12	Nsukka	Enugu state				
A13	Lafia	Nasarawa				

Thirteen accessions of Bambara groundnut were collected from different areas in Northern and South eastern Nigeria and used for the study.

Data collection

Harvested grains of 13 Bambara groundnut accessions from each location were packaged, appropriately labelled and taken to the laboratory for determination of the proximate, mineral, vitamins and antinutrient contents

Proximate analysis:

The moisture, crude fibre, crude protein, ash, crude fat and carbohydrate of the samples were determined using methods of the Association of Official Analytical Chemists (AOAC, 1984). All determinations were done in triplicates. Determination of moisture content was done by weighing the sample in crucible and drying in oven at 105°C, until a constant weight was obtained. Determination of ash content was done by ashing at 550°C for about 3hrs. The Kjeldhal method was used to determine the protein content by multiplication of the nitrogen value with a conversion factor of 6.25. The crude fibre content of the samples was determined by digestion method and the crude fat was done by Soxhlet extraction method. Total soluble carbohydrate was determined by the

difference of the sum of all the proximate composition from 100%.

Mineral element analysis:

The mineral contents - potassium and sodium were determined using flame photometer, while calcium, magnesium, iron, zinc and manganese was determined using atomic absorption spectrophotometer as described by the Association of Official Analytical Chemists (AOAC, 1990) after appropriate digestion by acids. All the determinations were done in triplicates.

Phytochemical analysis

Qualitative phytochemical analyses of the Bambara groundnuts were determined using the methods of Sofowora (1993) and Harborne (1999). All determinations were done in triplicates.

Data analysis

Data obtained from the biochemical analyses were subjected to analysis of variance (ANOVA) using GenStat for Windows, 12th edition (2009). Principal component analysis was used to decompose the total variation in order to determine the nutrient variables that contribute the most of the total variation.

RESULTS

The result showed that the proximate composition (table 2 and table 3) of the groundnyut accessions bambara was significantly affected by genotype variations and location (P < 0.05). Among the accessions, Ankpa had the highest ash content (2.619%), highest protein fraction (2.291%) and highest fat cntent (6.753%) while the highest carbohydrate fraction was recorded in Aniri (61.279%). Nkanu recorded the highest crude fibre (2.127%) and moisture contents (7.480%) while Agwu had the highest dry matter content (93.56%). Across locations, Bbambara groundnut grown at Amakama had the highest ash (3.081%), crude fibre (2.0397%) and fat contents (6.318%). The highest carbohydrate (60.218%) and dry matter contents were recorded in bambara groundnut grown at Igbariam while those grown at Benin recorded the highest protein (22.705%) and moisture contents (7.136%).

Table 4 and 5 show the mineral content of 13 bambara groundnut accessions grown across three locations. Genotype and location had significant effects on the mineral contents of the bambara groundnut accessions (P < 0.05). Among the accessions, Ezeagu recorded the highest iron (5.29mg100g) and phosphorus (36.52mg/100g) contents while Jos III recorded the highest potassium (197.709mg/100g) and zinc (4.859mg/100g). Nkanu had the highest calcium content (292.36mg100g), Zuru had the highest copper content (0.3944mg100g), Agwu

recorded the highest sodium content (40.531mg100g) while Ankpa had the highest magnesium content (52.788mg100g). Bambara groundnut grown at Igbariam had the highest calcium (273.85mg/100g), copper (0.3408mg/100g), iron (5.706mg/100g) and zinc (4.788mg/100g) contents while those grown at Benin had the highest potassium (198.716mg/100g), sodium (38.51mg/100g) and phosphorus (36.518mg/100g) contents. Babara groundnut grown at Amakama had the highest magnesium (51.756mg/100g) content

Variations in genotype and location had significant effects on the antinutrient contents of the bambara groundnut accessions (p < p0.05). Table 6 and 7 show the antinutrient content of 13 bambara groundnut accessions grown across three locations. Among the accessions, Lafia recorded the highest (0.4678 mg/100g)alkaloid and T.I. (20.272mg/100g) contents. Jos I and Jos II recorded the highest phytate (0.6428 mg/100g) and tannin (0.7506 mg/10g)contents respectively. Agwu had the highest HCN content (3.047mg/100g), Nkanu had highest hemaglutinin the content (1766.8mg/100g) while Ezeagu had the highest saponin content (0.5022mg/100g). Across locations, Bambara groundnut grown at Benin recorded the highest alkaloid (0.4751mg/100g), HCN (2.9026mg/100g), (17.412 mg/100 g)T.I. and saponin (0.4817mg100g) contents while those grown at Amakama had the highest hemaglutinin (1717.5mg/100g), phytate (0.5438mg/100g) and tannin (0.7299mg/100g) contents.

	Ash	Crude	Carbo	Crude	Fat	Dry	Moisture
Accession	content	fibre	hydrate	protein	content	Matter	content
Kano	2.496	2.0889	59.555	22.514	5.964	92.73	7.266
Zuru II	2.563	2.0406	60.040	22.466	6.381	93.33	6.508
Ankpa	2.619	2.0250	58.168	23.291	6.753	92.83	7.122
Jos II	2.406	1.9178	59.657	22.806	6.534	93.37	6.625
Zuru I	2.572	1.8483	60.109	21.713	6.342	92.62	7.382
Nkanu	2.479	2.1272	59.255	22.157	6.513	90.33	7.480
Jos III	2.525	1.9278	61.183	21.499	6.245	93.40	6.621
Agwu	2.567	1.9756	60.904	22.302	5.765	93.56	6.456
Jos I	2.552	2.0733	60.095	22.080	6.234	93.03	6.937
Aniri	2.387	2.0039	61.279	21.408	6.172	93.21	6.749
Ezeagu	2.599	1.8911	60.586	22.547	5.468	92.93	7.069
Nsukka	2.396	1.9939	59.390	22.993	6.247	93.04	7.036
Lafia	2.288	2.0628	58.047	23.436	6.544	92.55	7.454
Mean	2.496	1.9982	59.867	22.401	6.243	92.84	6.977
$LSD^{(0.05)}$	0.1108	0.08931	0.4864	0.3342	0.1285	0.9159	0.2561
	***	***	***	***	***	***	***

Table 2: The Proximate content of thirteen Bambara groundnut accessions

Table 3: The proximate content of thirteen Bambara groundnut accessions grown across three locations in Southern Nigeria

	Location					
Nutrient trait	Amakanma	Igbariam	Benin	Mean		
Ash content	3.081	2.296	2.111	2.496		
Crude fibre content	2.0397	2.0258	1.9290	1.9982		
Carbohydrate content	59.449	60.218	59.933	59.867		
Crude protein content	22.173	22.325	22.705	22.401		
Fat content	6.318	6.255	6.156	6.243		
Dry matter content	92.99	93.16	92.38	92.84		
Moisture content	6.955	6.841	7.136	6.977		

NS=Not significant (P>0.05); *=significant at P<0.05; **=significant at P<0.01; ***=significant at P<0.001

	Calciu	Coppe	Iron	Potassiu	Magnesiu	Sodiu	Phosphoru	Zinc
Accessio	m	r	Conten	m	m	m	S	Conten
n	content	conten	t	content	Content	conten	Content	t
		t				t		
Kano	262.20	0.308	4.977	194.306	50.209	33.251	33.235	4.1039
Zuru II	258.95	9 0.298 3	4.712	190.537	51.325	36.406	32.454	4.4717
Ankpa	255.37	0.384	5.014	182.788	52.788	33.284	32.581	4.2328
Jos II	243.46	0.336	4.203	178.152	50.947	36.496	34.961	4.8039
Zuru I	268.27	0.394	5.210	178.106	50.202	32.767	33.043	4.6950
Nkanu	292.36	0.337	4.534	195.528	51.654	36.893	32.804	4.4489
Jos III	277.11	0.301	4.736	197.709	49.815	39.729	33.353	4.8594
Agwu	276.70	0.366	4.522	176.659	51.219	40.531	34.296	4.2244
Jos I	269.53	0.326	4.933	171.821	51.199	40.498	35.662	4.2544
Aniri	285.54	0.355	4.816	164.812	51.749	40.342	34.582	4.2750
Ezeagu	267.43	0.348	5.279	164.468	50.518	39.439	36.542	3.9583
Nsukka	267.53	0.293	4.939	174.335	51.342	34.438	35.289	4.3000
Lafia	272.51	0.318	4.658	196.313	50.020	34.771	33.176	4.1922
Mean	268.23	0.336	4.810	181.964	50.999	36.850	33.998	4.3708
$LSD^{(0.05)}$		0.012						0 0843
	2.156 ***	6 ***	0.1352	0.5628	0.3895	0.2930 ***	0.6161	0.0013

Table 4: The mineral content (mg/100g) of thirteen Bambara groundnut accessions

NS=Not significant (P>0.05); *=significant at P<0.05; **=significant at P<0.01; ***=significant at P<0.001

	Location						
Nutrient trait	Amakanma	Igbariam	Benin	Mean			
Calcium content	267.05	273.85	263.78	268.23			
Copper content	0.3340	0.3408	0.3341	0.3363			
Iron content	4.793	5.106	4.531	4.810			
Zinc content	4.0944	4.7888	4.2291	4.3708			
Sodium content	37.400	34.638	38.510	36.850			
Potassium content	165.556	181.621	198.716	181.964			
Magnesium content	51.756	49.882	51.359	50.999			
phosphorus content	32.779	32.698	36.518	33.998			

Table 5: The mineral nutrient content of thirteen Bambara groundnut accessions grown across three locations in Southern Nigeria

 Table 6: The antinutrient content of thirteen Bambara groundnut accessions

	Alkaloid	HCN	Hemaglutinin	T.I	Phytate	Saponin	Tanin
Accession	content	content	content	Content	content	content	content
Kano	0.3300	2.2239	1657.1	12.158	0.4506	0.3444	0.7261
Zuru II	0.3522	2.3656	1592.0	13.039	0.5111	0.4083	0.7161
Ankpa	0.3261	3.0133	1565.4	12.528	0.5583	0.4511	0.7033
Jos II	0.3561	2.6983	1732.4	14.270	0.4922	0.4189	0.7506
Zuru I	0.4072	3.0283	1743.6	12.531	0.4622	0.3439	0.6983
Nkanu	0.3744	2.8744	1766.8	14.493	0.4906	0.3400	0.6278
Jos III	0.3950	2.6617	1744.2	16.644	0.4750	0.3383	0.7078
Agwu	0.4400	3.0472	1542.4	16.103	0.6256	0.4039	0.7178
Jos I	0.3139	2.9406	1699.9	16.051	0.6428	0.4250	0.6544
Aniri	0.4622	2.7783	1584.4	13.844	0.5222	0.4294	0.6867
Ezeagu	0.3650	2.3517	1549.2	14.066	0.5439	0.5022	0.7144
Nsukka	0.3739	2.1028	1627.7	18.202	0.4928	0.4411	0.7078
Lafia	0.4678	2.7161	1654.1	20.272	0.5144	0.4172	0.6722
Mean	0.3818	2.6771	1650.7	14.939	0.5217	0.4049	0.6987
$LSD^{(0.05)}$	0.02084	0.04486	14.09	0.5080	0.01605	0.01432	0.0.014
	***	***	***	***	***	***	***

NS=Not significant (P>0.05); *=significant at P<0.05; **=significant at P<0.01; ***=significant at P<0.001

	Location						
Genotype	Amakanma	Igbariam	Benin	Mean			
Alkaloid content	0.3542	0.3162	0.4751	0.3818			
HCN content	2.4973	2.6314	2.9026	2.6771			
Hemaglutinin content	1717.5	1578.2	1656.4	1650.7			
Phytate content	0.5438	0.5290	0.4922	0.5217			
Saponin content	0.3249	0.4082	0.4817	0.4049			
T.I. content	13.822	13.582	17.412	14.939			
Tanin content	0.7299	0.7201	0.6462	0.6987			

Table 7: The antinutrient content of thirteen Bambara groundnut accessions grown across three locations in Southern Nigeria

Principal component analysis

The eigenvector values for principal components of nutritional traits of thirteen Bambara groundnut accessions grown across three locations in Southern Nigeria in 2017 and 2018 are shown in Table 8. The total variation in the measured nutritional traits of the Bambara groundnut accessions was partitioned into twelve principal components (PCs), with the first three PCs accounting 54.2% of the total variation in the nutritional character of the accessions. The first principal component (PC1) captured 21.5%

of the total variation. It had an eigen value of 4.731 and had crude protein content, carbohydrate content, calcium content, sodium content, and phytate content as its major contributing attributes. PC2 with an eigen value of 3.862 represented 17.6% of the total variation had moisture content, dry matter content, and tannin content as the major contributing factors. PC3 which captured 15.1% of the variation with eigen value of 3.321 had high loadings for potassium, zinc, hydrogencyanide and T.I.

groundnut accessions grown across three locations in Southern Nigeria in 2017 and 2018.							
	PC1	PC2	PC3	PC4	PC5	PC6	
Eigen Values	4.731	3.862	3.321	2.659	2.174	1.461	
Proportion of Variance (%)	21.5	17.6	15.1	12.1	9.9	6.6	
Cumulative Proportion (%)	21.5	39.1	54.2	66.2	76.1	82.8	
Moisture content	0.069	0.324	0.189	-0.208	0.186	0.009	
Dry matter	0.028	-0.434	-0.045	-0.065	-0.052	0.388	
Ash	-0.210	0.130	0.001	-0.373	0.151	-0.062	
Crude protein	0.373	0.066	0.201	-0.011	-0.105	-0.098	
Crude fibre	-0.165	0.194	0.221	0.342	-0.099	0.094	
Carbohydrate	-0.338	-0.250	-0.176	-0.006	0.091	0.015	
Calcium	-0.302	0.197	0.180	-0.111	-0.095	-0.005	
Magnesium	0.156	0.231	-0.133	-0.022	-0.417	0.000	
Phosphorus	-0.294	-0.135	-0.052	-0.020	-0.116	-0.335	
Potassium	-0.100	0.022	0.359	0.223	0.260	0.027	
Iron	-0.051	0.193	0.047	-0.320	0.103	0.532	
Zinc	0.087	-0.137	-0.406	0.303	0.034	0.065	
Copper	-0.025	0.097	-0.283	-0.338	-0.322	0.156	
Sodium	-0.370	-0.212	0.005	0.023	-0.152	-0.202	
Tannin	0.156	-0.353	-0.085	-0.126	0.186	0.268	
Phytate	-0.301	0.000	-0.010	0.083	-0.366	0.208	
Alkaloid	-0.327	0.200	-0.052	0.138	-0.071	0.332	
Hydrogecyanide	-0.072	0.297	-0.358	-0.089	0.125	-0.058	
T.I	-0.048	-0.069	0.339	0.237	-0.065	0.318	
Haem	-0.115	0.245	-0.270	0.317	0.211	-0.008	
Saponin	0.044	-0.135	0.253	-0.162	-0.436	-0.128	

Table: 8: eigenvector values for principal components nutritional traits of thirteen Bambara groundnut accessions grown across three locations in Southern Nigeria in 2017 and 2018.

Discussion

This research examined the differences in proximate, mineral, and antinutrient properties across thirteen Bambara groundnut accessions planted in three locations. The findings revealed significant variations in all the evaluated nutritional traits among the accessions. These differences in nutrient content could be attributed to genetic diversity among the accessions, indicating the potential for enhancing these traits through breeding programs. Previous studies, such as those by Unigwe et al. (2018), Adeleke et al. (2018), Anhwange and Atoo

(2015), and Amarteifio et al. (2006), have also documented considerable nutritional variation based on genotype. Location significantly impacted all nutritional traits except copper, suggesting that environmental factors, such as agro-climatic conditions and quality, influence the nutrient soil composition of Bambara groundnuts. Significant year-to-year variations were observed in all traits, except crude fiber and phosphorus content. Additionally, the results indicated significant genotype × environment interactions, emphasizing the role of environmental factors in shaping the

nutritional qualities of grain crops. According to Halimi et al. (2019), both genetic and environmental factors, along with their interaction, account for the variation in the nutritional composition of grain crops within and between species. The ash content of the accessions was lower than the 4.36% and 3.53% reported by Olaleye et al. (2013) and Anhwange and Atoo (2015), but consistent with values reported by Yao et al. (2015) and Akaninwor and Okechukwu (2004). The crude fiber content content observed in this study aligns with the findings of Olaleye et al. (2013) but is lower than the values reported by Adeleke et al. (2018), Yao et al. (2015), and Anhwange and Atoo (2015). Carbohydrate levels in the accessions were high, ranging from 58.05% in Lafia to 61.28% in Aniri, which is at the upper end of previously reported ranges for Bambara groundnut (Udeh et al., 2020). The mean crude protein content across both years was 22.4%, with values ranging from 21.4% in Aniri to 23.4% in Lafia, surpassing the values reported by Adeleke et al. (2018), Yao et al. (2015), Olaleye et al. (2013), and Anhwange and Atoo (2015). According to Mwale et al. (2007), Bambara groundnut's protein content is comparable to other legumes, making it a valuable complement to cereal-based diets. Although the protein content of Bambara groundnut is often reported to be below 25%, Halimi et al. (2019) suggested that selective breeding could enhance its protein more concentration, contributing significantly to food and nutrition security, particularly in sub-Saharan Africa. The fat content of the accessions ranged from 5.5% in Ezeagu to 6.8% in Ankpa, with an overall mean of 6.2%. These values exceed those reported by Yao et al. (2015) but align with those by Adeleke et al. (2018). Although Bambara groundnut's fat content is low compared to oilseeds like groundnut or soybean, it falls within the expected range for

pulses, making it unsuitable for oil extraction (Duranti and Gius, 1997; Mudryj et al., 2014;

The mineral levels in this study exceeded those reported by Adeleke et al. (2018), Olaleve et al. (2013), and Amarteifio et al. (2006) but fell short of the values reported by Halimi et al. (2019). The levels of ANFs observed in this study were lower than those in previous studies (Halimi et al., 2019; Yao et al., 2015; Olaleye et al., 2013; Mazahib et al., 2013; Akaninwor and Okechukwu, 2004). Antinutritional factors (ANFs) in pulses, such as enzyme inhibitors, tannins, and phytic acid, limit their broader use and consumption (Rochfort and Panozzo, 2007; Soetan and Oyewole, 2009). ANFs reduce protein digestibility and nutrient absorption, with phytates hindering mineral absorption (Gilani et al., 2012). Reducing ANFs through breeding is a priority for improving digestibility and taste (Wang et al., 2003). PCA showed substantial contributions of nutrient traits to the total observed variation.

Conclusion

The nutritional analysis of Bambara groundnut accessions across three locations demonstrated significant genetic variation in proximate, mineral, and antinutrient traits. Location also played a critical role in influencing these nutritional traits, further impacted genotype-environment by interactions. PCA showed substantial contributions of nutrient traits to the total observed variation. This study highlights the influence of environmental factors, such as agro-climatic and soil conditions, on Bambara groundnut's nutritional quality. The evaluated accessions are rich in nutrients, underscoring their potential as valuable dietary components in sub-Saharan Africa, particularly Nigeria. These genotypes offer promising breeding material for improving the nutritional characteristics of Bambara groundnut.

REFERENCE

Adeleke O.R.; Adiamo O.Q. and Fawale, Nutritional. O.S. (2018).physicochemical, functional а properties of protein concentrate and isolate of newly developed Bambara groundnut (Vigna subterreneaL.) cultivars. Food Science and Nutrition. 2018:6:229-242. https://doi.org/10.1002/fsn3.552

Akaninwor, J.O. and Okehchuwu, P.N. (2004). Comparative nutrient and antinutrient levels in commercial and formulated weaning mixtures. Biokemistri 16(1):15-21

Akinyeye, R.O.; Adeyeye, E.I.; Fasakin, O.

and Agboola, A. (2011).Physicochemical properties and anti-nutritional factors

of oil palm fruit products (Elias guineensis Jacq.) from Ekiti State. Electronic

Journal of Environmental Agriculture and Food Chemistry. 10(5) 2190-2198

Anhwange, B.A. and Atoo, G.H. (2015).Proximate Composition of Indigenous Bambara nuts (Vigna subterranean (L.) Verdc). SCSR Journal of Pure and

Applied Sciences (SCSR-JPAS) 2(1): pp 11 - 16

AOAC. Association of Official Analytical Chemists. (1990). Official methods of analysis of the association of analytical official chemists. 16th ed. Gaithersburg AOAC (MD): International.

Duranti, M., Gius, C., 1997. Legume seeds:

protein content and nutritional value. Field Crops Res. 53, 31-45

Gilani, G.S., Xiao, C.W., Cockell, K.A., 2012. Impact of antinutritional factors in food

proteins on the digestibility of protein and the bioavailability of amino acids and on protein quality. Br. J. Nutr. 108, S315–S332.

Halimi, A.R.; Mayes, S. Barkla, B. and King,
G. (2019). The potential of the underutilized pulse bambara
groundnut (Vigna Subterranea (L.) Verdc.)
for nutritional food security.
Journal of Food Composition Analysis.
77:47–59.

Massawe, FJ, Dickson, M, Roberts, JA, Azam – Ali, SN. (2002), Genetic diversity in Bambara groundnut (Vigna Subterranean [L.] Verdc.), landraces revealed by AFLP markers. Published on NRC Research Press Website http://:www.genome.nrc.ca, Canada

Mazahib, A.M.; Nuha, M.O.; Salawa, I.S. and Babiker E.E. (2013). Some nutritional attributes of bambara groundnut as influenced by domestic processing. International Food Research Journal, 20:1165–71

Mudryj, A.N., Yu, N., Aukema, H.M., 2014. Nutritional and Health Benefits of Pulses 39. pp. 1197.

Mwale SS, Azam-Ali SN, Massawe FJ. (2007). Growth and development of bambara groundnut (Vigna subterranea) in response to soil moisture:
1. Dry matter and yield. European Journal of Agronomy 26, 345-353

Olaleye, A.A.; Adeyeye, E.I. and Adesina A.J. (2013). Chemical composition of bambara groundnut (V. subterranea L. Verdc) seed parts. Bangladesh Journal of Scientific And Industrial Research. 48(3): 167-178 Rochfort, S., Panozzo, J., 2007. Phytochemicals for health, the role of pulses. J. Agric. Food Chem. 55, 7981–7994

Samuel, U.N.; Unekwuojo, C.N.; Olagunju, A.; Muhammad, A.; Graham, F.B. and Okpe, O. (2014). Proximate, antinutrients and mineral composition of raw and processed (boiled and roasted) Sphenostylis stenocarpa seeds from southern Kaduna, Northwest Nigeria.

- Journal of International Scholarly Research Notices Nutrition 9:1–9
- Sandberg, A.S., 2002.). Bioavailability of minerals in legumes. Br. J. Nutr. 88 (Suppl 3), S281–5.

Soetan, K.O., Oyewole, O.E., 2009. The need for adequate processing to reduce the antinutritional factors in plants used as human foods and animal feeds: a review. African Journal of Food Science. 3(9):223-232 Unigwe, A.E.; Gerrano, A.S.; Adebola, P. and Pillay, M. (2016). Morphological variation in selection accessions of bambara groundnut (Vigna subterranae L. Verdc) in South Africa. Journal of Agricultural Science. vol 8, No 11. URL: http://dx.doi.org/10.5539/jas.v8n11p 69

Wang, T.L., Domoney, C., Hedley, C.L., Casey, R., Grusak, M.A., 2003. Can we improve the nutritional quality of

legume seeds? Plant Physiol. 886–891

Yao, D., Beket, B.S. and Zoro, I.A. (2005). Observations preliminaries de variabilite entre quelquesmorphotypes de voandzou (Vigna subterranea L. Verdc.) de Côte d'Ivoire. Biotechnologie, Agronomie, Society Environmental Sciences. of 9. 249 - 258.

Acknowledgement:

No funding was received for this work. However, the authors would like to thank the National Cereal research Institute and the National Institute for Oil Palm Research (NIFOR) for providing land for setting up of the field experiment.

Authurs' contribution:

All authors collaborated in this work. Okereke, A. C. and Nwofia G. E. designed the study. The field work, data collection and statistical analysis were done by Okereke, A.C. under the supervision of Nwofia, G.E. and Okocha, P. I. Writing of initial draft, editing and formating was carried out by Edugbo, R.E.. The final draft was read by all authors.